
CA-Ideal

Web Interface Guide

Release 2.2

MVS/VSE

This documentation and related computer software program (hereinafter referred to as the “Documentation” is for

the end user’s informational purposes only and is subject to change or withdrawal by Computer Associates

International, Inc. (“CA”) at any time.

THIS DOCUMENTATION MAY NOT BE COPIED, TRANSFERRED, REPRODUCED, DISCLOSED, OR

DUPLICATED, IN WHOLE OR IN PART, WITHOUT THE PRIOR WRITTEN CONSENT OF CA. THIS

DOCUMENTAION IS PROPRIETARY INFORMATION OF CA AND PROTECTED BY THE COPYRIGHT

LAWS OF THE UNITED STATES AND INTERNATIONAL TREATIES.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS”

WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR

NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO THE END USER OR ANY THIRD PARTY

FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION,

INCLUDING WITHOUT LIMITATION, LOST PROFITS, BUSINESS INTERRUPTION, GOODWILL, OR LOST

DATA, EVEN IF CA IS EXPRESSLY ADVISED OF SUCH LOSS OR DAMAGE.

THE USE OF ANY PRODUCT REFERENCED IN THIS DOCUMENTATION AND THE DOCUMENTATION

IS GOVERNED BY THE END USER’S APPLICABLE LICENSE AGREEMENT.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with “Restricted Rights” as set forth in 48 C.F.R. Section 12.212, 48 C.F.R Sections 52.227-19©(1) and

(2) or DFARS Section 252.227.7013©(1)(ii) or applicable successor provisions.

-- TECHNICAL SUPPORT --

Call Computer Associates Technical Support for any information not covered in this document or the related

publications. See the CA Product support Directory on the Internet at http://www.cai.com/ under Service and

Support for the appropriate telephone number to call for direct support. In North America, you may call 1-800-645-

3042 or 1-516-342-4683 and your call will be returned as soon as possible. Outside North America, contact your

local Computer Associates Technical Support Center for assistance.

Release 2.2, March 2000

Copyright � 2000 Computer Associates International, Inc.

One Computer Associates Plaza, Islandia, NY 11788-7000

All rights reserved.

CA-Ideal is a trademark of Computer Associates, Inc.

All product names referenced herein are trademarks of their respective companies.

Contents iii

Contents

Chapter 1: About This Guide

Introduction ...1–1

Organization ..1–1

Publications..1–2

Related Publications ...1–3

Notation Conventions...1–4

Chapter 2: Preliminary Concepts

CA-Ideal and the Internet...2–1

How Does the CA-Ideal Web Interface Work?...2–2

Extracting Data From the Web..2–4

Uploading HTML Pages to the Web...2–4

Designing a Web Application...2–5

Translating 3270 Elements into Web Pages ..2–5

Handling Menus...2–6

Handling Queries ...2–7

Handling Forms..2–7

Providing Help ...2–8

Chapter 3: Installing the CA-Ideal Web Interface

Pre-Installation Requirements..3–1

Installation Instructions ..3–1

Step 1: Upgrade CA-Ideal and CAIIPC ..3–2

Step 2: Add Program Definitions to CICS..3–2

Step 3: Assemble the Application Module Table ...3–2

Assembling the Table ..3–2

Adding the Table Entry...3–3

Step 4: Define and Add Alias Transactions..3–3

Define Alias Transactions to CICS ...3–3

Add Alias Transaction IDs to SCWBTRAN ..3–3

iv CA-Ideal Web Interface Guide

Step 5: Install the Analyzer Exit.. 3–3

Step 6: Import the Templates .. 3–4

Step 7: Apply Zaps... 3–4

Step 8: Define the Database for Binary Data.. 3–4

Step 9: Create ZIP Files and Extract Their Contents ... 3–5

Chapter 4: Creating a Web Application

Sample Code ... 4–1

Genlevel 9707 Sample .. 4–1

Genlevel 9812 Sample .. 4–1

Genlevel 9906 Sample ... 4–2

Extracting POST Variables ... 4–2

Adding Binary Data.. 4–3

Database Tables.. 4–5

Appendix A: Configuring the Uploader Facility

Configuring CA-Ideal Uploader...A–1

Setting Up the CA-Datacom Server...A–1

Setting Up Uploader ...A–1

Selecting Files ...A–3

Logging on to the Server ...A–3

Appendix B: Assembling the Transaction Table

The SCWEBTB Macro..B–1

Appendix C: Troubleshooting

About This Guide 1–1

Chapter 1
About This Guide

Introduction

This document explains how to install the CA-Ideal Web Interface and how to
use this interface to create a CA-Ideal application that runs on the Web.

Organization

This guide is organized as follows:

Chapter Description

1 Introduces the contents and organization of this guide, and lists
additional reference materials that can be used with this guide.

2 Contains a conceptual overview of the CA-Ideal Web Interface.

3 Explains how to install the CA-Ideal Web Interface.

4 Describes how to create your own web application.

A Explains how to configure the CA-Ideal Uploader.

B Contains information for assembling the transaction table.

C Lists error codes and their meanings. Also contains information
on troubleshooting errors.

Index Provides a quick way to locate specific material.

Publications

1–2 CA-Ideal Web Interface Guide

Publications

The following publications are supplied with CA-Ideal:

Title Contents

Administration Guide Contains information about administration
functions such as defining systems and users,
preparing DB2 application plans and packages,
securing CA-Ideal facilities, setting site options, and
maintaining VLS libraries.

Command Reference Guide Contains all commands in alphabetical order.

Creating Dataviews Includes all information necessary to create
dataviews for use with CA-Ideal.

Creating Panel Definitions Includes all information necessary to create and
maintain panel definitions.

Creating Programs Includes all the information necessary to create a
program definition, including both the fill-ins and
the PDL statements used in the procedure section.
This guide also includes information on compiling
and running the program and handling errors.

Generating Reports Includes all information necessary to generate a
report, including how to create, maintain, and use
report definitions, and how to produce the report
using PDL statements.

Installation and
Maintenance Guide

Describes the installation of CA-Ideal in an MVS
environment.

Installation Guide Describes the installation of CA-Ideal in a VSE
environment.

Master Index and Glossary A cross reference tool that provides a combined
index of the CA-Ideal guides and a glossary of
commonly used terms.

Messages and Codes Guide Includes all error, warning, and informational
messages CA-Ideal produces, with an explanation of
the error and possible corrective actions.

Problem Determination
Guide

Describes tools and procedures you can use to
define, clarify, document, and solve problems
arising from applications.

Programming Reference Contains all Program Definition Language
statements in alphabetical order.

Continued

Publications

About This Guide 1–3

Continued

Title Contents

Reference Summary Provides a quick reference for CA-Ideal commands
and functions.

Working in the CA-Ideal
Environment

Explains how to get started, introduces the
environment, and explains how to control the
environment. This guide also includes information
on transporting applications from one CA-Ideal site
to another.

All guides are updated as required. Instructions accompany each update
package.

Related Publications

To use the CA-Ideal Web Interface, your database management system must be
CA-Datacom. Therefore, you should also be familiar with these CA-Datacom
documents:

� CA-Datacom/DB Database and System Administrator Guide

� CA-Datacom/DB CA-DataDictionary User Guide

� CA-Datacom/DB Message Guide

� CA-Datacom/DB Programmer Guide

� CA-Datacom/DB SQL User Guide

Notation Conventions

1–4 CA-Ideal Web Interface Guide

Notation Conventions

This guide uses the following rules and special characters in syntax illustrations.

Enter exactly as shown in command syntax:

Notation Description of use

UPPERCASE Identifies commands, keywords, and keyword values that you
must enter exactly as shown or replace it with an authorized
abbreviation.

symbols You must enter all special characters, such as parentheses and
quotation marks (but not ellipses, brackets, and braces) as
shown.

Do not enter the following as shown; notations clarify command syntax:

Notation Description of use

lower case italics Represent a value you must supply.

Brackets [] You must choose optional keywords or clauses, or a group of
options.

Braces { } Enter one of the keywords or clauses.

Underlining Indicates a CA-Ideal default that you cannot change with a SET
command and, therefore, you do not need to specify.

Ellipses ... You can repeat the preceding word or clause.

Note: The Concepts sections of the Programming Reference Guide describes the

use of special characters in names.

Preliminary Concepts 2–1

Chapter 2
Preliminary Concepts

This chapter contains the basic information that you need to understand what
the CA-Ideal Web Interface is and how it is used. Before using the CA-Ideal
Web Interface, you should read this chapter and be familiar with the basic
concepts for using CA-Ideal as explained in the Working in the CA-Ideal

Environment guide.

CA-Ideal and the Internet

CICS Web Interface CICS Release 4.1 and CICS Transaction Server 1.3 introduced a direct
interface between CICS and TCP/IP, allowing CICS to be used as a World
Wide Web (WWW) server. The OS/390 hardware is a powerful platform for
a web server, and is capable of combining database access from the Internet
and from terminal-based clients without complex communication and
duplication of data between platforms.

What Makes CA-

Ideal a Good

Choice for the Web?

The two main requirements for a Web Server application language, like the
CA-Ideal Web Interface, are database access and text (string) handling. The
CA-Ideal language probably has the simplest database handling of any
language, and the string functions are the equal of any compiled language.

� Database access

If your data is in a CA-Datacom database, then CA-Ideal is the simplest and
most direct mechanism for providing Internet access. It does not require the
addition of any intermediate processors, and provides a true HTML
interface to the data, which requires no plug-ins or client-side code (except
any Java and so on that you want to use to enhance the presentation of
data). The same CA-Datacom MUF can combine Web and other traffic
against a single database, ensuring that the data is always current for each.

� Text handling

CA-Ideal is an efficient language for the CICS server environment, being
both compiled for performance and compact in its executable format. A
compiled language server has the additional advantage of being inherently
hacker-proof, as compared to interpretive languages such as Perl.

How Does the CA-Ideal Web Interface Work?

2–2 CA-Ideal Web Interface Guide

Using these strengths, the CA-Ideal Web Interface lets you create applications to
run on the Web. Sample applications you could develop include:

� catalogs

� student registration systems

� e-commerce solutions

You can also make your existing 3270 applications look nicer, making them
easier to use and more appealing to the end user.

CA-World Demos Sample code for the CA-Ideal Web Interface demonstrations at CA-World for
1997, 1998, and 1999 is provided on the CA-Ideal tape.

� The 1997 demo shows the basic operation of the interface.

� The 1998 demo simulates an Internet commerce site using Java, Javascript
and other techniques. This demo ran from the CA-Ideal Order Entry
database that is shipped for installation verification with CA-Ideal. The code
used has been distributed on the subsequent maintenance tapes for
CA-Ideal, so if you have the prerequisite CICS and other IBM code, you can
run these demos on your own test systems. The demo may not be a truly
realistic Web storefront, but it contains some useful examples that you may
want to incorporate into your WWW presence. Some extra descriptive
HTML pages are included to help you use the samples.

� The 1999 demo runs entirely off the database.

How Does the CA-Ideal Web Interface Work?

The basis of the interface between CICS and TCP/IP is a pair of IBM-supplied
transaction drivers. One driver listens to the HTTP port (typically 80, but
customizable to any other number) and calls site-written code to select the
transaction that will handle a request. The second is the driver program at the
top level of each WWW transaction, which handles sending the data back to the
browser.

Note: The CA-Ideal Web Interface does not use converters, but allows all the
work to be done by CA-Ideal.

CA-Ideal supplies an analyzer called IDLWBADX that determines the
transaction details from the HTTP request. The main work is done in the
transaction started by the analyzer to handle the request. These transactions can
be spread across multiple regions, or run in a CICSplex across multiple system
images, since they have no transaction affinity.

How Does the CA-Ideal Web Interface Work?

Preliminary Concepts 2–3

Note: IDLWBADX assumes that all transactions for the Web are written in
CA-Ideal.

CA-Ideal provides a sub-driver called SC00WBTD that is invoked from the IBM
Alias driver DFHWBA. SC00WBTD sets up a CA-Ideal environment running a
stub main program called CICSWEB in system $ID. CICSWEB, in turn, is
dynamically modified to call a subprogram written in CA-Ideal and specified
using a table (SCWBTRAN) that maps the transaction ID to a program name
and user. The single parameter passed between CICSWEB and its subprogram
is a copy of the CICS COMMAREA that contains the HTTP request. The same
parameter is replaced with the response by the called program. Usually this is
an HTML page, but it could be an image or some Java code.

In the following diagram, the server controller side controls what is displayed
by the browser. The alias side depicts what happens when the CA-Ideal Web
Interface is used to create an application for the Web. In addition, (1) represents
translations between ASCII and EBCDIC, and (2) represents the converter
programs, which are not used by the CA-Ideal Web Interface.

How Does the CA-Ideal Web Interface Work?

2–4 CA-Ideal Web Interface Guide

As you can see from the diagram, the CA-Ideal Web Interface consists of two
major parts:

� the user-written API that lets the programmer create and edit web pages
using CA-Ideal members, and

� the analyzer that displays the HTML code as a web page for the end user.

When creating an API, the CA-Ideal Web Interface provides two techniques for
building HTML. You can:

� read it from a CA-Ideal member, or

� dynamically construct it from database contents.

Two utility programs are provided to assist this process:

� @I$IPOST extracts data from the web

� @I$MEMBR reads an HTML page from a CA-Ideal member

Extracting Data From the Web

CA-Ideal provides a routine called @I$IPOST to simplify the extraction of data
from HTML forms that use the POST method. It handles the process of
searching the incoming data stream for the name/value pairs, as well as
translating the escape sequences used for special characters back into their
readable form. Sample CA-Ideal code is provided to illustrate how this is used.

Uploading HTML Pages to the Web

Another code sample reads an HTML page from a CA-Ideal MEMBER using the
routine @I$MEMBR. This sample code is likely to become the workhorse
transaction, sending all of the static HTML for your site to the Web. Many
HTML experts like to work with a simple text editor for their page construction,
and will find that the CA-Ideal member editor usually does all that is needed.
However, if the CA-Ideal editor is not sufficient, then it is a straightforward
process to FTP a page to the mainframe and use Source Transport to import it as
a member.

For binary data (images, applets, and so on), the CA-Ideal Web Interface
provides the Uploader facility. The Uploader takes binary data stored in the
CA-Datacom database and uploads it to the Web. This allows you to eliminate
any need for a server other than CICS.

Designing a Web Application

Preliminary Concepts 2–5

Designing a Web Application

Basic Design

Methodology
The basic method used when designing an application for the web consists of
the following steps.

1. Research the types of data to be included in the application.

2. Determine the type of web page that best displays the data.

3. Develop an HTML prototype using only static pages.

4. Link the pages together.

5. Insert the dynamic pages.

The first two steps are planning steps. The more detailed your plan, the easier it
will be to execute the remaining steps. The following sections concentrate on
helping you identify elements used in a 3270 session and how they could be
translated to a web page.

Note: This guide assumes that you understand how to design good web pages.
If you feel that you need more information on web page design, consult one of
the many books that deal with this subject.

The last three steps are performed when you write your application. These
steps are covered in detail in the chapter called Creating a Web Application.

Translating 3270 Elements into Web Pages

An application for the World Wide Web is different from one that runs on a
3270.

� The terminal has a persistent session with CICS that ensures continuity of
the conversation with the user. CA-Ideal reinforces this continuity by
allowing a program to operate pseudo-conversationally even though it is
apparently conversational.

� The Web application behaves differently. There is no connection to provide
anything like a session. There is no terminal identifier on which to base a
pseudo-conversation. There is no guarantee that a user will ever respond.

How are these differences resolved? The CA-Ideal Web Interface resolves these
differences by separating web pages into three categories:

� Static Pages

The display of information to the end user may not have a conversation
context at all. A page of information may have no dependencies on any
prior pages, so the code to display it will need no additional information.

Designing a Web Application

2–6 CA-Ideal Web Interface Guide

� Dynamic Pages

The information to be displayed on a page may depend only on parameter
data from the previous page. In this case, an HTML <FORM> can provide
that parameter data appended to the request for the new page, and again no
special continuity data is required.

� Mixed Content Pages

The third type requires the same data to be available across a sequence of
pages, such as the identity of the account or order. This subdivides into two
variants: one where the sequence cannot be broken, where a hidden form
field can provide this information; and another that allows for the user to
break off and resume the sequence, where a cookie is used to hold the
persistent data.

Most applications developed for the Web will be a mixture of these basic types.
Designing a Web application is mainly a question of recognizing the
fundamental types and how they are used in the application you are
developing.

Handling Menus

A basic unit of a 3270 application suite is the menu. Since this is simply a list of
places to go, in a Web application a menu translates to a page containing a list of
hyperlinks to other HTML pages. These other pages are frequently also menus
at a more detailed level. A well-designed site will provide a return path to
navigate up the menu structure.

Menus are the simplest elements to code in CA-Ideal, since you only need to
create the member containing the HTML, and the CA-Ideal template does the
rest. Because menus have no continuity requirements, they do not need cookies,
forms and so on.

Alternatives If your site design allows you to use frames, the main menu can be in its own
frame. This allows the menu to always be available for navigational
purposes. Use of Dynamic HTML and a scripting language, or Java, can
provide a site menu that expands and collapses as you navigate, combining
all of the menus into one.

A boilerplate footing to your pages can contain a mini-menu of pages the user
could go to next. For example, every page becomes a menu in addition to its
own function (like putting a PF key table at the bottom of each 3270 screen).

Designing a Web Application

Preliminary Concepts 2–7

Handling Queries

Fortunately, the technique needed to handle Web-based queries is already a
familiar one for programmers who have written scrolling applications on a 3270
panel. Each iteration of the page is now a separate invocation of the program,
but the code inside the main loop of a scrolling program is just about what you
need on the Web.

Instead of PF keys, links on the page (form buttons or regular text) will pass in
the direction, and they can also be made to send the current position in the table
by simply appending that information to the link as a parameter.

Note: This is illustrated in the demo program WEBDEMO6, which sends 10
entries at a time with a scroll forward only, and in the Emporium catalog list
(WEBDEMOA) which scrolls a category at a time in either direction.

Of course, you could send all of the data at once if the page size is reasonable
(considering not just the 32KB limit on HTML size, but also the response time
over the network for a large download).

Handling Forms

Many 3270 screens correspond to forms in HTML. However, there are a
number of reasons why you do not just convert them on a one-to-one basis.

� A 3270 screen is a fixed size, and despite the CA-Ideal ability to define
panels larger than a screen, most data entry is done one screen at a time.
The browser window is locally scrollable, so it becomes feasible to put out a
form to capture all of the data at once. This usually makes the validation
process easier, too.

� The same 3270 panel works for re-prompting the user on validation errors.
However, this is not the case in a Web-based application. A 3270
application can loop, retransmitting the panel until the user has completed a
valid set of data; on the Web there is no session to track the changes, so each
form received has to be treated as a new request. The empty form is a
different page from the one that prompts for corrected data. If all the
validation can be done at the client, you can validate in JavaScript, but this
does not allow for database lookup (for example, does the item number
exist?) or any other reference to server-side data.

� A data entry panel is often used with its attributes changed to display the
same data. Pages that display data are very different in structure from
pages that gather it, which need FORM elements.

� A query application uses multiple output pages depending on whether the
data is found, not found, or the input criteria are not valid (for example, a
non-numeric account number). These situations are often handled on a 3270
with a single panel containing a message line.

Designing a Web Application

2–8 CA-Ideal Web Interface Guide

As previously mentioned, the application structure for handling a form is also
quite different. In 3270-based programs, the same code unit sends, validates,
and resends data for correction or confirmation. For an internet process, the
initial form is just HTML. The program that receives the form data gets one shot
at processing it, and must either update the database and send a confirmation,
or make no data changes and resend the form for correction with the user's data
already filled in and error messages added.

The data entry paradigm can also be fundamentally changed. Instead of filling
in an order form, the end-user might be clicking a button on a catalog page that
says "buy this item". This makes order entry an incremental process, instead of
the more common 3270 method where it all goes on one screen and the whole
order is entered onto the database only when complete. This sort of change can
only be done by redesigning the application for the Web, which is why screen-
scraping methods are a poor alternative to re-coding in CA-Ideal.

Providing Help

An advantage of using a Web browser in place of a 3270 is the extra room for
information. You can:

� provide more instruction within a form on how to fill in the various boxes

� provide drop-down selection lists to both assist and control the choices for a
field

� open a new window for help information

Radio buttons and checkboxes are also easier to understand than the 3270
alternatives.

With some extra work using Javascript, you can interact with the user on a field-
by-field basis, validating each field as the user tabs to the next field, providing
timely help with a diagnostic message. This typically only works for field-level
checks, but a logical order for the form fields can enable cross-checking with the
earlier entries.

Another place to add help is the browser status area. A prompt can be given
there when the cursor enters the field, indicating what is expected. For example,
"Enter only digits".

As well as instruction and encouragement, you can also provide more direct
assistance to the user. Selection lists have already been mentioned, but
assistance extends to calendars and maps, performing calculations as data is
entered, and so on. There are numerous examples in the CA-World demos.

Designing a Web Application

Preliminary Concepts 2–9

Selections can be provided as pictures instead of just text, the simplest case
being arrows on the scroll buttons. But do not forget that some users (such as
the blind) could be using a text-only browser, so always supply the text as
ALT="...".

Pop-up Help Help can also be made available as text pages that you open in a separate
window using the TARGET attribute. These can, of course, be hyperlinked to
behave like Windows help.

Installing the CA-Ideal Web Interface 3–1

Chapter 3
Installing the CA-Ideal Web Interface

Pre-Installation Requirements

CICS or CTS

Requirements
The CA-Ideal Web Interface is dependent on IBM's CICS Web Interface,
which is part of CICS Release 4.1 (and above) and CTS Release 1.2 (and
above). You must install and verify the IBM code before installing the
CA-Ideal Web Interface; refer to the CICS Web Interface Guide (SC33-1892)
for details.

CA-Ideal

Requirements
The CA-Ideal Web Interface is part of CA-Ideal Release 2.2. CA-Ideal
should be running at Genlevel 9707 or higher. The basic CA-Ideal Web
Interface is found at the 9707 genlevel.

For CA-Ideal system requirements, see the Installation Guide that accompanied
your CA-Ideal product.

Database

Requirements
Before using the Uploader facility of the CA-Ideal Web Interface, you must
have the mainframe side of the conversation set up. This requires:

� CA-Datacom Server version 3.0

� CA-Datacom/DB 9.0

� CA-Datacom SQL Option

Installation Instructions

To install the CA-Ideal Web Interface, follow these steps:

1. Upgrade CA-Ideal and IPC.

2. Add program definitions to CICS.

3. Assemble the Application Module Table.

4. Define and add alias transactions.

5. Install the analyzer exit.

6. Import the templates.

Installation Instructions

3–2 CA-Ideal Web Interface Guide

7. Apply zaps.

8. Define the database used for binary data.

9. Create ZIP files and extract their contents.

Each step is thoroughly discussed in the following sections.

Step 1: Upgrade CA-Ideal and IPC

Upgrade CA-Ideal to Release 2.2, Genlevel 9707 or higher. Upgrade CAIIPC to
Release 4.2 Genlevel 9707 or higher.

Step 2: Add Program Definitions to CICS

Add program definitions to CICS by using either the supplied transactions as
input to DFHCSDUP, or by entering the contents online. Sample definition
statements are shown next.

--
* IDEAL WEB INTERFACE *
--
DEFINE PROGRAM(SC00WBTD) GROUP(IL22WEB)

LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) ATALOCATION(BELOW)
EXECKEY(CICS) EXECUTIONSET(FULLAPI)

DEFINE PROGRAM(@I$IDWEB) GROUP(IL22WEB)
LANGUAGE(ASSEMBLER) RELOAD(NO) RESIDENT(NO) USAGE(NORMAL)
USELPACOPY(NO) STATUS(ENABLED) CEDF(YES) ATALOCATION(BELOW)
EXECKEY(USER) EXECUTIONSET(FULLAPI)

Step 3: Assemble the Application Module Table

Step 3 consists of the following tasks:

Task 1: Assemble the Application Module Table.
Task 2: Add a table entry to @ILMLIST.

As an alternative to performing these tasks, you can run a CA-Ideal batch job to
identify the program. Use the statements shown below.

SELECT SYSTEM $ID
IDENTIFY MODULE CICSWEB FOR PROGRAM CICSWEB

Installation Instructions

Installing the CA-Ideal Web Interface 3–3

Assembling the Table

Assemble the Application Module Table to define the CA-Ideal stub program
called CICSWEB in system $ID. Use the sample jobstream ILWEB01 to
assemble the table.

Adding the Table Entry

Add an entry to your @ILMLIST assembly for table TABLEID=WEB. The
CA-Ideal Release 2.2 member LMLSTASM contains sample JCL.

Step 4: Define and Add Alias Transactions

Step 4 consists of the following tasks:

Task 1: Define alias transactions to CICS.
Task 2: Add alias transaction IDs to the SCWBTRAN table.

Each task is discussed next.

Define Alias Transactions to CICS

Define alias transactions to CICS by copying them from the IBM-supplied
CWBA transaction as explained in the IBM documentation. To enable the
sample Web applications provided by CA-Ideal, add transaction IDs IDW1,
IDW2, through IDWZ. Make sure the new transactions have TWASIZE=64.

Add Alias Transaction IDs to SCWBTRAN

The alias transaction IDs defined in Task 1 must be added to table SCWBTRAN
using the supplied sample jobstream. This sample table code defines the
CA-Ideal Web demo applications, plus additional entries. The default user
WWW (you can substitute another user if desired) must be defined as having
RUN-PROD authority in system $ID, or your ATZEXIT must allow this user to
run CICSWEB in that system. A sample jobstream is supplied as ILWEB02.

Step 5: Install the Analyzer Exit

Install the analyzer exit called IDLWBADX. The source for this is supplied on
the CA-Ideal installation tape. Specify this name using the CWBC transaction.

Installation Instructions

3–4 CA-Ideal Web Interface Guide

Important! The IBM sample program used to verify the CICS Web Interface will no
longer run when this exit is in place.

Step 6: Import the Templates

Import the sample programs to use as templates for designing web pages. You
might need to edit the URLs contained in the code and members to match your
site's naming conventions.

The images and Java code used are also supplied as a PKZip archive. Move
these files to an appropriate server (it can be a CA-Datacom database) and
adjust the links that refer to them. It is recommended that you make these
changes to the external source before you import the code, since it is easier to
perform this global change on a single file. Job ILWEB03 is provided for this
import step.

Step 7: Apply Zaps

Apply the zap in PMSTRND.TXT to your PMS translate tables so that the left
and right square bracket characters can be used in the member and PDL editors.
These characters are required by JavaScript for subscript notation.

Testing: From an Internet Browser, enter the URL:

http://hostname/idw3/demomenu

Note: Replace hostname with your CICS domain name.

To run the Ideal Emporium demo, enter:

http://hostname/idw3/shop

Note: This demo requires at least Internet Explorer 4.0 or Netscape Navigator
3.0 to support the level of Java and JavaScript used. Make sure that Java and
JavaScript are enabled in the browser, and that cookies are permitted.

Step 8: Define the Database for Binary Data

If you want to use the binary data support transaction IBIN, you must define the
database to hold the binary data. The CA-Ideal transaction that runs
WEBIMAGE must be defined to SCWBTRAN, and the program must be
compiled successfully. The CICS definition of this transaction must be copied
from the alias transaction CWBA, as for all CA-Ideal Web transactions. You
must supply the name of this transaction if you choose HTML logging.

Installation Instructions

Installing the CA-Ideal Web Interface 3–5

Note: The CA-Ideal Web Interface will also work with this data served by
another platform (UNIX or NT), but the sample code (Genlevel 9906 or later)
assumes a mainframe-only server.

To Use the CA-Ideal

Demos
Using the sample database requires that the Master List be assembled with
DATALN=32760 and the DATAPOOL startup parameter be specified with a
corresponding large buffer size. The additional size of the image records also
means that the LXX must be formatted to accommodate them, for example:

INIT AREA=LXX,BLKSIZE=32760

Step 9: Create ZIP Files and Extract Their Contents

Use job ILWEB04 to create the ZIP files containing the Image/Java files for the
CA-Ideal demos and the CA-Ideal Uploader facility. Download these files to a
PC and extract the contents.

Creating a Web Application 4–1

Chapter 4
Creating a Web Application

Sample Code

Multiple levels of sample code are distributed on the CA-Ideal tape, but all
samples have version numbers that are 001. This section explains the differences
between the sample versions.

Genlevel 9707 Sample

Genlevel 9707 was the first time the Web Interface solutions were made
available. The samples WEBDEMO1 through WEBDEMO5 from CA-World
1997 were distributed to be compatible with the IBM sample analyzer
DFHWBADX (the default) and were coded to extract their parameters from a
request entered in the default format of:

http://hostname/CICS/transid/SC00WBTD/parms

Important! No CA-Ideal analyzer code was supplied at this level. The solution that
initially provided the interface code describes this sample level, and refers to this syntax
for testing the code. If you install a later level of samples, the request format changes.

Genlevel 9812 Sample

Genlevel 9812 included the sample code from the CA-World 1998 demos, which
required the use of a custom analyzer (IDLWBADX) to allow longer strings for
GET parameters. The request format for this analyzer is:

http://hostname/transid/parms

The analyzer provides a default for the converter and program name
parameters, as well as providing a default for the transaction ID.

At this level, the image data (supplied as a ZIP file on the tape) is meant to be
hosted on an NT or UNIX server, so the sample code includes absolute URLs
that require editing before the samples can be run. The original WEBDEMO1-5
programs have been altered to reflect the request format changes that place the
parameter string at a different offset in the request.

Extracting POST Variables

4–2 CA-Ideal Web Interface Guide

Genlevel 9906 Sample

At some point, we will distribute the code used for the CA-World 1999 demo.
This revises all prior samples to make use of the ibin transaction to handle the
binary transfers. The change also allows the use of relative URLs throughout the
demo code, so it should no longer be necessary for sites to modify the code
before it can be run.

Extracting POST Variables

@I$IPOST extracts the variables for a CGI POST request from the incoming
request. It also performs any URL-unencoding required. @I$IPOST is only
applicable for a program running under SC00WBTD with the CA-Ideal Web
Interface. A sample program, WEBDEMOZ, is provided to illustrate how it is
used.

Important! The UNESCAPE option must be turned off in the CICS Web Interface for
@I$IPOST to work correctly. This is a global setting in CICS 4.1, and determined by
the analyzer on a per-transaction basis in CTS 1.2 and above.

The following table lists the @I$IPOST parameters. An explanation of each
parameter follows the table.

Level Field Name T I Ch/Dg Occur U

1 FUNCTION X 4 U

1 PARM-NAME V 20 U

1 PARM-VALUE V 2000 U

1 RETCODE N B 4 U

1 STATE X 100 U

function

INIT starts the interface and checks that the request was indeed POST

FIND locates a variable by name. If the same name is used multiple times,
only finds the first occurrence.

NEXT with a non-null, non-blank name, returns the next occurrence of that
name.

With a blank or null name returns the next variable.

Adding Binary Data

Creating a Web Application 4–3

TERM ends the process and cleans up

parm-name

Supply the name of the variable to locate for a FIND or NEXT request, or set to
$SPACE or an empty string to locate the next variable using NEXT.

parm-value

The value of the variable is returned here

retcode

The following codes can be returned:

0 all OK

1 invalid request

4 for INIT, this indicates a GET request, instead of POST

for FIND or NEXT, indicates no variable was found

8 for INIT, no variables were present

12 INIT request found neither GET nor POST request!

state

This variable is used by @I$IPOST to hold its state information between calls.
The same area must be preserved and passed on each call.

 Adding Binary Data

The CA-Ideal Web Interface uses a CA-Datacom database to hold binary files
(pictures, applets, scripts, and so on) that supplement the text of web pages.
Binary files are then placed into a web page using the CA-Ideal Web Interface
Uploader facility.

The analyzer IDLWBADX supplied with the CA-Ideal Web Interface recognizes
a special transaction ID (the default is IBIN) for use with binary data. This
transaction differs from all others in that the data content is not translated from
EBCDIC to ASCII when it is sent to the browser.

Note: To use the Uploader facility, you must be running CA-Ideal at Genlevel
9906 or higher.

Adding Binary Data

4–4 CA-Ideal Web Interface Guide

Pseudo-directory

Prefixes
Although the data is held on the mainframe in a relational database, it
appears to the end user's browser just like a Windows or Unix directory
structure, because of the way the "filename" (actually the database primary
key) is constructed. When Uploader adds the record to the database, it
prefixes the name with a string that reflects a pseudo-directory, which may or
may not be the same as the real directory from which the data was copied.

The purpose of this feature is to allow a mainframe production system and a
Windows/Unix development system to look the same from the browser
perspective, differing only in the name of the server. This makes it a simple
process to move an application and its HTML from one system to the other.

Content-type or

MIME-type
The header data sent with the binary data from the server includes a field
called "Content-type" (also known as MIME-type in Windows Explorer and
other contexts). This field tells the browser how to interpret the data that
follows.

For example, this statement specifies that the data is a .GIF image.

Content-type: image/gif

This statement specifies a Web page.

Content-type: text/html

The Content-type entry in the HTTP header, when the binary data is sent from
CA-Ideal/Web, is derived from the file extension of the original PC file. A table
MIME_TYPE on the mainframe database is used to hold these associations. This
table is not accessed by the CA-Ideal Uploader, so you can update this table
after uploading the data to ensure your extensions are handled correctly.
However, if you are using HTML logging, the log might not appear correctly if
the type information is missing.

The WEBIMAGE program that sends the binary data from the database looks
up the file extension in a table called MIME_TYPE to determine what to put in
the Content-type field in the header. You can maintain this table using a CICS
application written in CA-Ideal. An entry must be present in this table for each
extension you use before you can retrieve your binary data, but it is not checked
by Uploader, so you may upload your data first and then update the table
afterward.

Adding Binary Data

Creating a Web Application 4–5

Database Tables

The default definitions used by Uploader are shown in the following tables.

DEAL_IMAGE table

Column Name Data Type and

Defult Size

Description

URL_FILENAME CHAR(50) The prefixed name of the file

EXTENSION CHAR(8) The uppercased extension of the file.

ORIGINAL_URN CHAR(254) The location of the original file in
Universal Resource Name form

LAST_CHANGE TIMESTAMP The "last-modified" information from
the uploaded file

BLOB_DATA VARCHAR(31500)
FOR BIT DATA

The binary file copy

The following table is not accessed by Uploader directly but must be updated
with valid information for the HTML log to display correctly.

MIME_TYPE table

Column Name Data Type and

Default Size

Description

EXTENSION CHAR(8) The uppercased extension of the file.

MIME_TYPE_STRING VARCHAR(50) The value of "Content-type" to be
sent with the data.

Configuring the Uploader Facility A–1

Appendix A
Configuring the Uploader Facility

Configuring CA-Ideal Uploader

Before you can use the Uploader, you must provide some details of the
configuration. An ODBC connection to the mainframe database must be
specified, and a mapping between the PC file structure and the database
filenames must be established. This is done in the configuration option of the PC
application itself.

There are two parts to configuring the PC end of the Upload process.

� Setting up CA-Datacom Server (ODBC)

� Setting up Uploader

Setting Up the CA-Datacom Server

Refer to your CA-Datacom documentation for instructions.

 Setting Up Uploader

The Uploader setup is entered by pressing the Configure... button on the main
window.

 Configuration presents a dialog with four tabs.

Database Tab On this tab you select the ODBC Data source that represents your
CA-Datacom database.

Clicking the Tables... button leads to a dialog where you can change the names
of the table and columns where the binary data will be stored on the mainframe
database. You should also use this to confirm that the default database has been
defined, and to register these values for Uploader.

Options Tab On the options tab you can select whether uploaded files are to overwrite any
existing files of the same name.

Configuring CA-Ideal Uploader

A–2 CA-Ideal Web Interface Guide

Logging Tab Uploader can write a log file to record what it has uploaded. This can be a
simple text file, but it can also be an HTML file that can be opened in your
browser to confirm that at least the image files arrived as intended.

Java applets and similar files can only be logged as text, because we have no
way of knowing what additional parameter information they require.

In order to build the links to the database versions of the data, you must
provide the base URL (without the "http://", but with the transaction name)
that will be concatenated with the uploaded filename. Remember to include the
port number, if the CICS/Web Interface does not use the standard port 80.

Directories Tab Uploader lets you mirror the directory structure of the PC files in the
"filenames" used to access the database. This makes it a relatively simple
matter to edit the URLs of the included binary data when their targets are
uploaded, and are now being served by CA-Ideal.

Selecting Files

Configuring the Uploader Facility A–3

To do this, you record a prefix that will be added to the name of each file
uploaded from a given directory. You can use the same prefix for more than one
directory, so the files all appear to have come from the same place.

Selecting Files

Files are selected for upload from a standard Windows File Open dialog, which
allows multiple selections.

Uploader will remember the last folder used, and open that folder first.

The "filenames" used on the mainframe will be the same as those on the PC,
with the addition of the prefix mapped to the selected folder.

If a duplicate file is uploaded, and you have asked to be prompted on
replacement, this dialog will be shown.

The mainframe file information shows where the current file came from, as well
as the original name. The icon used for the PC file is obtained from Windows,
and the mainframe file icon is fixed.

Logging on to the Server

The first time the Uploader needs to access CA-Datacom Server it will present
this LOGON dialog. This may be when you upload images, or when you
configure the application.

Logging on to the Server

A–4 CA-Ideal Web Interface Guide

The server details will be recorded, but for security, the User ID and Password
must be entered every time.

Assembling the Transaction Table B–1

Appendix B
Assembling the Transaction Table

The SCWEBTB Macro

An example of the SCWEBTB macro appears below.

WEBTRANS TITLE ‘CICS WEB TRANSACTIONS’
SCWEBTB TYPE=INITIAL
SCWEBTB TYPE=ENTRY, X

TRANID=IDW1, X
TRNDATA='WWWWEBDEMO1001', X
DFLTUSR=WWW

. . .
SCWEBTB TYPE=FINAL
END

An explanation for each parameter appears next.

TYPE=INITIAL Specified on the first call to the macro, creates the table
header. Only one call to the macro may specify INITIAL and
it must be the first.

TYPE=ENTRY Creates a transaction entry.

TYPE=FINAL Completes the table information. Only the last call to the
macro may specify FINAL.

TRANID= Enter the 4-character CICS transaction ID for the Web
transaction. This must be an alias transaction as described in
the CICS Web Interface documentation, and as a CA-Ideal
transaction, it requires a TWASIZE of 64 or more.

TRNDATA= This parameter specifies the system, name and version of the
CA-Ideal program to be called to process this request. Bytes 1
to 3 are the system ID, 4 to 11 are the program name, and 12
to 14 the version number or “PRD”. Trailing blanks should be
entered if the program name is less than 8 characters. Note
that if the program is in PROD status, the version must be
specified as PRD and not as a numeric value.

Error! No text of specified style in document.

B–2 CA-Ideal Web Interface Guide

DFLTUSR= This indicates the user ID to be used to run the CA-Ideal
application. Since the commands that will be executed are
“SELECT SYSTEM $ID; RUN CICSWEB PROD”, this user
needs RUN-PROD authority in system $ID. It is not sufficient
to make this default user an CA-Ideal Administrator, as that
authority is revoked for this environment which has no sign
on verification.

The table should be linked with a name of SCWBTRAN. It
should not be made resident, as you will want to replace it.

Notes

You should specify the version as PRD for a production system, as this allows
the processing code to be replaced by your usual mechanisms for production
CA-Ideal code, and the use of load module format for performance. In a
development region, you may want to use a fixed version 001 (which avoids
replacing the table) and duplicating the code to the next version before marking
to production. This is the technique used for the samples.

Troubleshooting C–1

Appendix C
Troubleshooting

ERRID values that might appear in ADRLOG for errors in the SC00NATD and
SC00WBTD programs are listed next. There is no terminal for these
transactions, so ADRLOG is the only audience.

ICNATDxx/ICWBTDxx

01 Allocation of SCF options global area failed
02 Error locating existing SCF options area
03 Failure loading SC00OPTS
04 ADRPNL cannot be accessed
05 SCF#OPTIONS member (ADRPNL) cannot be read
06 Failure loading SC00TRAN / SCASTRAN or SCWBTRAN
07 Transaction not in SCASTRAN/SCWBTRAN table
08 Failure allocating Session control block
09 Call to SC00IDIN to start CA-Ideal failed
10 DSF workarea could not be allocated
11 DSF workarea could not be located
12 Not used
13 Load of SC00CVTP failed
14 Allocation of SC00CVTP workarea failed
15 INIT call to SC00CVTP failed
16 Load of PMSPNS1 failed
17 Load of SC00SECR failed
18 Allocation of SC00SECR workarea failed
19 INIT call to SC00SECR failed

Most of these errors can only occur if this is the first CA-Ideal transaction after
CICS is started, and initialization is being performed for the whole CA-Ideal
environment.

If the setup for the interface is incomplete, there may be an ASRA abend
typically in SC00CVTP when we try to recover from the error. This has been
seen when there is no corresponding entry in SCWBTRAN for the transaction,
but can occur in other circumstances.

You can check the contents of the table by using @I$SCF PGM=SCWBTRAN in
an CA-Ideal session to ensure the transactions are included.

SELECT SYS $ID;REFRESH PGM CICSWEB checks that there are no problems
with the main program load module.

C–2 CA-Ideal Web Interface Guide

Use CEMT INQUIRE TRANS to ensure the alias transactions are correctly
defined. It is important that the CA-Ideal transactions have TWASIZE=64.

CEMT I PROG(IDLWBADX) lets you check that the analyzer is being loaded
and has EXECKEY=CICS.

Once the run starts, subsequent errors may appear in RUNLIST. Check with
DIS OUT STA USER WWW for LIST ERROR outputs and other information.

	Web Interface Guide
	Contents
	Chapter 1: About This Guide
	Introduction
	Organization
	Publications
	Related Publications

	Notation Conventions

	Chapter 2: Preliminary Concepts
	CA-Ideal and the Internet
	How Does the CA-Ideal Web Interface Work?
	Extracting Data From the Web
	Uploading HTML Pages to the Web

	Designing a Web Application
	Translating 3270 Elements into Web Pages
	Handling Menus
	Handling Queries
	Handling Forms
	Providing Help

	Chapter 3: Installing the CA-Ideal Web Interface
	Pre-Installation Requirements
	Installation Instructions
	Step 1: Upgrade CA-Ideal and IPC
	Step 2: Add Program Definitions to CICS
	Step 3: Assemble the Application Module Table
	Assembling the Table
	Adding the Table Entry

	Step 4: Define and Add Alias Transactions
	Define Alias Transactions to CICS
	Add Alias Transaction IDs to SCWBTRAN

	Step 5: Install the Analyzer Exit
	Step 6: Import the Templates
	Step 7: Apply Zaps
	Step 8: Define the Database for Binary Data
	Step 9: Create ZIP Files and Extract Their Contents

	Chapter 4: Creating a Web Application
	Sample Code
	Genlevel 9707 Sample
	Genlevel 9812 Sample
	Genlevel 9906 Sample

	Extracting POST Variables
	Adding Binary Data
	Database Tables

	Appendix A: Configuring the Uploader Facility
	Configuring CA-Ideal Uploader
	Setting Up the CA-Datacom Server
	Setting Up Uploader

	Selecting Files
	Logging on to the Server

	Appendix B: Assembling the Transaction Table
	The SCWEBTB Macro

	Appendix C: Troubleshooting

